Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Crit Care ; 26(1): 292, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2053944

RESUMEN

BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.


Asunto(s)
COVID-19 , Neumonía Asociada al Ventilador , Adulto , COVID-19/complicaciones , COVID-19/epidemiología , Humanos , Incidencia , Unidades de Cuidados Intensivos , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/epidemiología , Neumonía Asociada al Ventilador/etiología , Respiración Artificial/efectos adversos , Estudios Retrospectivos , SARS-CoV-2
2.
Vaccine ; 40(23): 3159-3164, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1796037

RESUMEN

OBJECTIVES: Healthcare workers (HCWs), at increased risk of coronavirus disease 2019 (COVID-19) were among the primary targets for vaccination, which became mandatory for them on September 15th, 2021 in France. In November they were confronted to the fifth COVID-19 wave despite excellent vaccine coverage. We aimed to estimate the incidence of SARS-CoV-2 infection after complete vaccination among HCWs with different vaccination schemes, and its determinants. METHODS: We enrolled all HCWs in the university hospital of Rennes, France who had received complete vaccination (two doses of COVID-19 vaccine). The delay from last vaccination dose to SARS-CoV-2 infection was computed.Fitted mixed Cox survival model with a random effect applied to exposure risk periods to account for epidemic variation was used to estimate the determinants of SARS-CoV-2 infection after complete vaccination. RESULTS: Of the 6674 (82%) HCWs who received complete vaccination (36% BNT162b2, 29% mRNA-1273, and 34% mixed with ChAdOx1 nCoV-19) and were prospectively followed-up for a median of 7.0 [6.3-8.0] months, 160 (2.4%) tested positive for SARS-CoV-2 by RT-PCR. Incidence density of SARS-CoV-2 infection after complete vaccination was 3.39 [2.89-3.96] infections per 1000 person-month. Median time from vaccine completion to SARS-CoV-2 infection was 5.5 [3.2-6.6] months. Using fitted mixed Cox regression with the delay as a time-dependent variable and random effect applied to exposure risk periods, age (P < 0.001) was independently associated with the incidence of SARS-CoV-2 infection. Vaccine schemes were not associated with SARS-CoV-2 infection (P = 0.068). A period effect was significantly associated with the incidence of SARS-CoV-2 infection (P < 0.001). CONCLUSIONS: In this real-world study, incidence of SARS-CoV-2 infection increases with time in fully vaccinated HCWs with no differences according to the vaccination scheme. The short delay between complete vaccination and incident SARS-CoV-2 infection highlights the need for sustained barrier measures even in fully vaccinated HCWs.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Personal de Salud , Humanos , SARS-CoV-2 , Vacunación
4.
Am J Infect Control ; 50(4): 375-382, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1575242

RESUMEN

BACKGROUND: Health care workers (HCWs) are on the front line for COVID-19. Better knowledge of risk factors for SARS-CoV-2 infection is crucial for their protection. We aimed to identify these risk factors with a focus on care activities. METHODS: We conducted a seroprevalence survey among HCWs in a French referral hospital. Data on COVID-19 exposures, care activities, and protective equipment were collected on a standardized questionnaire. Multivariate logistic regressions were used to assess risk factors for SARS-CoV-2 IgG adjusted on potential confounding. FINDINGS: Among the 3,234 HCWs enrolled, the prevalence of SARS-CoV-2 IgG was 3.8%. Risk factors included contact with relatives or HCWs with COVID-19 (odds ratio [OR] 2.20 [1.40-3.45] and 2.16 [1.46-3.18], respectively), but not contact with COVID-19 patients. In multivariate analyses, suboptimal use of protective equipment during nasopharyngeal sampling (OR 3.46 [1.15-10.40]), mobilisation of patients in bed (OR 3.30 [1.51-7.25]), clinical examination (OR 2.51 [1.16-5.43]), and eye examination (OR 2.90 [1.01-8.35]) were associated with SARS-CoV-2 infection. Patients washing and dressing and aerosol-generating procedures were additional risk factors, with or without appropriate use of protective equipment (OR 1.37 [1.04-1.81] and 1.74 [1.05-2.88]). CONCLUSIONS: Risk factors for SARS-CoV-2 infection among HCWs are (1) contact with relatives or HCWs with COVID-19, (2) close or prolonged contact with patients, (3) aerosol-generating procedures. Enhanced protective measures during the two latter care-activities may be warranted.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Personal de Salud , Humanos , Factores de Riesgo , SARS-CoV-2 , Estudios Seroepidemiológicos
5.
Am J Respir Crit Care Med ; 204(5): 546-556, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1416749

RESUMEN

Rationale: Early empirical antimicrobial treatment is frequently prescribed to critically ill patients with coronavirus disease (COVID-19) based on Surviving Sepsis Campaign guidelines.Objectives: We aimed to determine the prevalence of early bacterial identification in intubated patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia, as compared with influenza pneumonia, and to characterize its microbiology and impact on outcomes.Methods: A multicenter retrospective European cohort was performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation >48 hours were eligible if they had SARS-CoV-2 or influenza pneumonia at ICU admission. Bacterial identification was defined by a positive bacterial culture within 48 hours after intubation in endotracheal aspirates, BAL, blood cultures, or a positive pneumococcal or legionella urinary antigen test.Measurements and Main Results: A total of 1,050 patients were included (568 in SARS-CoV-2 and 482 in influenza groups). The prevalence of bacterial identification was significantly lower in patients with SARS-CoV-2 pneumonia compared with patients with influenza pneumonia (9.7 vs. 33.6%; unadjusted odds ratio, 0.21; 95% confidence interval [CI], 0.15-0.30; adjusted odds ratio, 0.23; 95% CI, 0.16-0.33; P < 0.0001). Gram-positive cocci were responsible for 58% and 72% of coinfection in patients with SARS-CoV-2 and influenza pneumonia, respectively. Bacterial identification was associated with increased adjusted hazard ratio for 28-day mortality in patients with SARS-CoV-2 pneumonia (1.57; 95% CI, 1.01-2.44; P = 0.043). However, no significant difference was found in the heterogeneity of outcomes related to bacterial identification between the two study groups, suggesting that the impact of coinfection on mortality was not different between patients with SARS-CoV-2 and influenza.Conclusions: Bacterial identification within 48 hours after intubation is significantly less frequent in patients with SARS-CoV-2 pneumonia than patients with influenza pneumonia.Clinical trial registered with www.clinicaltrials.gov (NCT04359693).


Asunto(s)
COVID-19 , Coinfección , Gripe Humana , Adulto , COVID-19/complicaciones , Humanos , Gripe Humana/complicaciones , Gripe Humana/epidemiología , Estudios Retrospectivos , SARS-CoV-2
6.
Intensive Care Med ; 47(2): 188-198, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1384370

RESUMEN

PURPOSE: Although patients with SARS-CoV-2 infection have several risk factors for ventilator-associated lower respiratory tract infections (VA-LRTI), the reported incidence of hospital-acquired infections is low. We aimed to determine the relationship between SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, and the incidence of VA-LRTI. METHODS: Multicenter retrospective European cohort performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation > 48 h were eligible if they had: SARS-CoV-2 pneumonia, influenza pneumonia, or no viral infection at ICU admission. VA-LRTI, including ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP), were diagnosed using clinical, radiological and quantitative microbiological criteria. All VA-LRTI were prospectively identified, and chest-X rays were analyzed by at least two physicians. Cumulative incidence of first episodes of VA-LRTI was estimated using the Kalbfleisch and Prentice method, and compared using Fine-and Gray models. RESULTS: 1576 patients were included (568 in SARS-CoV-2, 482 in influenza, and 526 in no viral infection groups). VA-LRTI incidence was significantly higher in SARS-CoV-2 patients (287, 50.5%), as compared to influenza patients (146, 30.3%, adjusted sub hazard ratio (sHR) 1.60 (95% confidence interval (CI) 1.26 to 2.04)) or patients with no viral infection (133, 25.3%, adjusted sHR 1.7 (95% CI 1.2 to 2.39)). Gram-negative bacilli were responsible for a large proportion (82% to 89.7%) of VA-LRTI, mainly Pseudomonas aeruginosa, Enterobacter spp., and Klebsiella spp. CONCLUSIONS: The incidence of VA-LRTI is significantly higher in patients with SARS-CoV-2 infection, as compared to patients with influenza pneumonia, or no viral infection after statistical adjustment, but residual confounding may still play a role in the effect estimates.


Asunto(s)
COVID-19 , Neumonía Asociada al Ventilador , Infecciones del Sistema Respiratorio , Anciano , COVID-19/epidemiología , Europa (Continente) , Femenino , Humanos , Incidencia , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Asociada al Ventilador/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Estudios Retrospectivos , Ventiladores Mecánicos
8.
Crit Care ; 25(1): 177, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1352667

RESUMEN

BACKGROUND: Patients with SARS-CoV-2 infection are at higher risk for ventilator-associated pneumonia (VAP). No study has evaluated the relationship between VAP and mortality in this population, or compared this relationship between SARS-CoV-2 patients and other populations. The main objective of our study was to determine the relationship between VAP and mortality in SARS-CoV-2 patients. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort. VAP was diagnosed using clinical, radiological and quantitative microbiological criteria. Univariable and multivariable marginal Cox's regression models, with cause-specific hazard for duration of mechanical ventilation and ICU stay, were used to compare outcomes between study groups. Extubation, and ICU discharge alive were considered as events of interest, and mortality as competing event. FINDINGS: Of 1576 included patients, 568 were SARS-CoV-2 pneumonia, 482 influenza pneumonia, and 526 no evidence of viral infection at ICU admission. VAP was associated with significantly higher risk for 28-day mortality in SARS-CoV-2 (adjusted HR 1.70 (95% CI 1.16-2.47), p = 0.006), and influenza groups (1.75 (1.03-3.02), p = 0.045), but not in the no viral infection group (1.07 (0.64-1.78), p = 0.79). VAP was associated with significantly longer duration of mechanical ventilation in the SARS-CoV-2 group, but not in the influenza or no viral infection groups. VAP was associated with significantly longer duration of ICU stay in the 3 study groups. No significant difference was found in heterogeneity of outcomes related to VAP between the 3 groups, suggesting that the impact of VAP on mortality was not different between study groups. INTERPRETATION: VAP was associated with significantly increased 28-day mortality rate in SARS-CoV-2 patients. However, SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, did not significantly modify the relationship between VAP and 28-day mortality. CLINICAL TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov, number NCT04359693.


Asunto(s)
COVID-19/mortalidad , COVID-19/terapia , Neumonía Asociada al Ventilador/epidemiología , Anciano , Europa (Continente)/epidemiología , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos
9.
Ann Intensive Care ; 11(1): 83, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1243820

RESUMEN

BACKGROUND: Empirical antibiotic has been considered in severe COVID-19 although little data are available regarding concomitant infections. This study aims to assess the frequency of infections, community and hospital-acquired infections, and risk factors for infections and mortality during severe COVID-19. METHODS: Retrospective single-center study including consecutive patients admitted to the intensive care unit (ICU) for severe COVID-19. Competing-risk analyses were used to assess cumulative risk of infections. Time-dependent Cox and fine and gray models were used to assess risk factors for infections and mortality. Propensity score matching was performed to estimate the effect of dexamethasone. RESULTS: We included 100 patients including 34 patients with underlying malignancies or organ transplantation. First infectious event was bacterial for 35 patients, and fungal for one. Cumulative incidence of infectious events was 27% [18-35] at 10 ICU-days. Prevalence of community-acquired infections was 7% [2.8-13.9]. Incidence density of hospital-acquired infections was 125 [91-200] events per 1000 ICU-days. Risk factors independently associated with hospital-acquired infections included MV. Patient's severity and underlying malignancy were associated with mortality. Dexamethasone was associated with increased infections (36% [20-53] vs. 12% [4-20] cumulative incidence at day-10; p = 0.01). After matching, dexamethasone was associated with hospital-acquired infections (35% [18-52] vs. 13% [1-25] at 10 days, respectively, p = 0.03), except in the subset of patients requiring MV, and had no influence on mortality. CONCLUSIONS: In this population of COVID-19 patients with high prevalence of underlying immune defect, a high risk of infections was noted. MV and use of steroids were independently associated with infection rate.

10.
Med Mycol Case Rep ; 31: 15-18, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-627480

RESUMEN

Although invasive pulmonary aspergillosis (IPA) is typically described in immunocompromised host, patient with severe influenzae can develop IPA. Similarly, patients with severe COVID-19 complicated with IPA are increasingly reported. Here, we describe a case of invasive aspergillosis with triazole-resistant A. fumigatus (TR34/L98H mutation) in a 56-year-old patient with COVID-19 in intensive care unit. This report highlights the need to define the available tools for diagnosis of invasive aspergillosis in severe COVID-19 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA